Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Exp Neurol ; 376: 114772, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599366

RESUMO

Animals on Earth need to hold postures and execute a series of movements under gravity and atmospheric pressure. VAChT-Cre is a transgenic Cre driver mouse line that expresses Cre recombinase selectively in motor neurons of S-type (slow-twitch fatigue-resistant) and FR-type (fast-twitch fatigue-resistant). Sequential motor unit recruitment is a fundamental principle for fine and smooth locomotion; smaller-diameter motor neurons (S-type, FR-type) first contract low-intensity oxidative type I and type IIa muscle fibers, and thereafter larger-diameter motor neurons (FInt-type, FF-type) are recruited to contract high-intensity glycolytic type IIx and type IIb muscle fibers. To selectively eliminate S- and FR-type motor neurons, VAChT-Cre mice were crossbred with NSE-DTA mice in which the cytotoxic diphtheria toxin A fragment (DTA) was expressed in Cre-expressing neurons. The VAChT-Cre;NSE-DTA mice were born normally but progressively manifested various characteristics, including body weight loss, kyphosis, kinetic and postural tremor, and muscular atrophy. The progressive kinetic and postural tremor was remarkable from around 20 weeks of age and aggravated. Muscular atrophy was apparent in slow muscles, but not in fast muscles. The increase in motor unit number estimation was detected by electromyography, reflecting compensatory re-innervation by remaining FInt- and FF-type motor neurons to the orphaned slow muscle fibers. The muscle fibers gradually manifested fast/slow hybrid phenotypes, and the remaining FInt-and FF-type motor neurons gradually disappeared. These results suggest selective ablation of S- and FR-type motor neurons induces progressive muscle fiber-type transition, exhaustion of remaining FInt- and FF-type motor neurons, and late-onset kinetic and postural tremor in mice.

2.
Clin Anat ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642017

RESUMO

The plantar aponeurosis (PA) is an elastic longitudinal band that contributes to the generation of a propulsive force in the push-off phase during walking and running through the windlass mechanism. However, the dynamic behavior of the PA remains unclear owing to the lack of direct measurement of the strain it generates. Therefore, this study aimed to visualize and quantify the PA behavior during two distinct foot postures: (i) neutral posture and (ii) windlass posture with midtarsal joint plantarflexion and metatarsophalangeal joint dorsiflexion, using computed tomography scans. Six healthy adult males participated in the experiment, and three-dimensional reconstruction of the PA was conducted to calculate its path length, width, thickness, and cross-sectional area. This study successfully visualized and quantified the morphological changes in the PA induced by the windlass mechanism, providing a precise reference for biomechanical modeling. This study also highlighted the interindividual variability in the PA morphology and stretching patterns. Although the windlass posture was not identical to that observed in the push-off phase during walking, the observed PA behavior provides valuable insights into its mechanics and potential implications for foot disorders.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38436123

RESUMO

When locomoting bipedally at higher speeds, macaques preferred unilateral skipping (galloping). The same skipping pattern was maintained while hurdling across two low obstacles at the distance of a stride within our experimental track. The present study investigated leg and trunk joint rotations and leg joint moments, with the aim of clarifying the differential leg and trunk operation during skipping in bipedal macaques. Especially at the hip, the range of joint rotation and extension at lift off was larger in the leading than in the trailing leg. The flexing knee absorbed energy and the extending ankle generated work during each step. The trunk showed only minor deviations from symmetry. Hurdling amplified the differences and notably resulted in a quasi-elastic use of the leading knee and in an asymmetric operation of the trunk.

4.
J Exp Biol ; 227(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426486

RESUMO

Macaques trained to perform bipedally used running gaits across a wide range of speeds. At higher speeds they preferred unilateral skipping (galloping). The same asymmetric stepping pattern was used while hurdling across two low obstacles placed at the distance of a stride within our experimental track. In bipedal macaques during skipping, we expected a differential use of the trailing and leading legs. The present study investigated global properties of the effective and virtual leg, the location of the virtual pivot point (VPP), and the energetics of the center of mass (CoM), with the aim of clarifying the differential leg operation during skipping in bipedal macaques. When skipping, macaques displayed minor double support and aerial phases during one stride. Asymmetric leg use was indicated by differences in leg kinematics. Axial damping and tangential leg work did not influence the indifferent peak ground reaction forces and impulses, but resulted in a lift of the CoM during contact of the leading leg. The aerial phase was largely due to the use of the double support. Hurdling amplified the differential leg operation. Here, higher ground reaction forces combined with increased double support provided the vertical impulse to overcome the hurdles. Following CoM dynamics during a stride, skipping and hurdling represented bouncing gaits. The elevation of the VPP of bipedal macaques resembled that of human walking and running in the trailing and leading phases, respectively. Because of anatomical restrictions, macaque unilateral skipping differs from that of humans, and may represent an intermediate gait between grounded and aerial running.


Assuntos
Macaca , Corrida , Animais , Humanos , Caminhada , Marcha , Perna (Membro) , Fenômenos Biomecânicos
5.
Ann Anat ; 252: 152198, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38101707

RESUMO

BACKGROUND: The innate shape characteristics of the hindfoot bones alter the loading conditions of the foot and thus may be associated with an increased risk of developing varus ankle osteoarthritis (OA). This study aimed to clarify the innate morphological patterns of the hindfoot bones that may be associated with ankle OA by analyzing the differences between the bone morphology of the non-affected side of patients with unilateral varus ankle OA and that of healthy participants. METHODS: In this case-control study, computed tomography images were used to develop three-dimensional models of three hindfoot bones (distal tibia with fibula, talus, and calcaneus) from 23 non-affected sides of patients with radiography-diagnosed unilateral ankle OA and 22 healthy control participants. Anatomical and sliding landmarks were placed on the surface of each bone, and the principal components (PCs) of shape variation among specimens were independently calculated for each bone, preserving homology between individuals. The PC modes representing 5% or more of the overall variation were statistically compared between the ankle OA and control groups. RESULTS: Significant differences were identified between the OA and control groups in the fifth PC mode for the tibia with fibula (proportion of variance, 5.1%; p =.025), fifth PC mode for the talus (6.7%, p =.031), and third PC mode for the calcaneus (7.4%, p =.001). The hindfoot bones of the participants who developed ankle OA had the following innate morphological characteristics: the lateral malleolar articular surface of the fibula was shifted superiorly, tibial plafond was enlarged posteroinferiorly, posterior width of the talar trochlea was narrower, talonavicular articular surface of the talus was oriented more frontally, anterior-middle talocalcaneal articular surfaces of the talus were more medially shifted and those of the calcaneus were flatter, calcaneal sustentaculum tali was less protruding, and lateral plantar process of the calcaneus was more superiorly positioned. CONCLUSIONS: These distinctive morphological alterations may increase the incidence and progression of varus ankle OA through aberrant anterior translation, internal rotation, and varus tilting of the talus.


Assuntos
Osteoartrite , Tálus , Humanos , Tornozelo/diagnóstico por imagem , Estudos de Casos e Controles , , Tálus/diagnóstico por imagem , Osteoartrite/diagnóstico por imagem
6.
Sci Rep ; 13(1): 12957, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563188

RESUMO

Plantar fasciitis is one of the most common musculoskeletal injuries in runners and jumpers, with a higher incidence in females. However, mechanisms underlying sex-associated differences in its incidence remain unclear. This study investigated the possible differences in landing and jumping kinematics and kinetics of the foot between sexes during drop-jump activities. Twenty-six participants, including 13 males and 13 females, performed drop-jumps from a platform onto force plates. Nineteen trials including ten males and nine females were selected for inverse dynamics analysis. The patterns of stretch and tensile force generated by the plantar aponeurosis (PA) were estimated using a multi-segment foot model incorporating the PA. Our results demonstrated that dorsiflexion, angular velocity, and normalized plantarflexion moment of the midtarsal joint right after the heel landed on the floor were significantly larger in females than in males. Consequently, the PA strain rate and tensile stress tended to be larger in females than in males. Such differences in the kinematics and kinetics of the foot and the PA between sexes could potentially lead to a higher prevalence of foot injuries such as plantar fasciitis in females.


Assuntos
Aponeurose , Fasciíte Plantar , Humanos , Feminino , Masculino , Fenômenos Biomecânicos , Cinética , Caracteres Sexuais
7.
Sci Rep ; 13(1): 8000, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198286

RESUMO

In human walking, whole-body angular momentum (WBAM) about the body centre-of-mass is reportedly maintained in a small range throughout a gait cycle by the intersegmental cancellation of angular momentum. However, the WBAM is certainly not zero, which indicates that external moments applied from the ground due to ground reaction forces (GRFs) and vertical free moments (VFMs) counteract the WBAM. This study provides a complete dataset of the WBAM, each segmental angular momentum, and the external moments due to GRFs and VFMs during human walking. This is done to test whether (1) the three components of the WBAM are cancelled by coordinated intersegmental movements, and whether (2) the external moments due to GRFs and VFMs contribute only minimally to WBAM regulation throughout a gait cycle. This study demonstrates that WBAM is regulated in a small range not only by the segment-to-segment cancellation, but also largely through contributions by the GRFs. The magnitude of VFM is significantly smaller than the peak vertical moment generated by the GRFs; however, in the single-support phase during walking, the VFM is possibly critical for coping with the change in the vertical WBAM due to force perturbations and arm or trunk movements.


Assuntos
Marcha , Caminhada , Humanos , Fenômenos Biomecânicos , Caminhada/fisiologia , Marcha/fisiologia , Movimento (Física) , Gravitação
8.
J Phys Ther Sci ; 35(4): 306-310, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37020828

RESUMO

[Purpose] Fall risk is immanent in humans because they are bipedal. Bipedalism has transited from quadrupedalism in both evolutional and developmental contexts. Past studies have measured the peak vertical ground force of forelimbs and hindlimbs in quadrupedalism; and revealed that load dominancy shifted from forelimbs to hindlimbs during evolution. The dominance of hindlimb peak vertical ground force allows forelimb freedom and is considered important for locomotor evolution toward bipedalism. With this consideration, we hypothesize that hindlimb peak vertical ground force is dominant in human adults when they designedly crawl in a quadrupedal manner. [Participants and Methods] Six healthy human adults crawled on their hands and knees over a pressure platform. We calculated the peak vertical ground force of their hands and knees by integrating the pressure of the contact area of each limb. [Results] The mean knee peak vertical ground force at 0.694 (per body weight) was significantly higher than that of the hand at 0.372 (per body weight). The mean hand/knee peak vertical ground force ratio was 0.536; therefore, it was -0.624 on the natural logarithmic scale. [Conclusions] Our findings on human adults are compatible with existing considerations on locomotor evolution toward bipedalism. Our findings contribute to the comprehensive understanding of human locomotion.

9.
Sci Rep ; 13(1): 6894, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37106093

RESUMO

In human bipedal walking, the plantar surface of the foot is in contact with the floor surface, so that a vertical free moment (VFM), a torque about a vertical axis acting at the centre-of-pressure due to friction between the foot and the ground, is generated and applied to the foot. The present study investigated the functional significance of the VFM in the mechanics and evolution of human bipedal walking by analysing kinematics and kinetics of human walking when the VFM is selectively eliminated using point-contact shoes. When the VFM was selectively eliminated during walking, the thorax and pelvis axially rotated in-phase, as opposed to normal out-of-phase rotation. The amplitudes of the axial rotation also significantly increased, indicating that the VFM greatly contributes to stable and efficient bipedal walking. However, such changes in the trunk movement occurred only when arm swing was restricted, suggesting that the VFM is critical only when arm swing is restrained. Therefore, the human plantigrade foot capable of generating large VFM is possibly adaptive for bipedal walking with carrying food, corroborating with the so-called provisioning hypothesis that food carrying in the early hominins is a selective pressure for the evolution of human bipedalism.


Assuntos
Hominidae , Caminhada , Animais , Humanos , , Extremidade Inferior , Fenômenos Biomecânicos , Marcha
10.
Ann Anat ; 247: 152053, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36696928

RESUMO

BACKGROUND: The present study aimed to clarify the morphological patterns of the calcaneus and talus that are associated with hallux valgus angle (HVA) by quantifying the differences in the hindfoot bone morphology between left and right sides in HV patients with clear bilateral difference of HVA. METHODS: Three-dimensional (3D) computed tomography scans of 32 feet of 16 patients with HV who had right-to-left HVA differences of more than 5 degrees (68.8 ± 8.6 years) were enrolled, and 3D surface models of the calcaneus and talus were generated. A total of 556 and 430 landmarks were placed on the calcaneal and talar surfaces, respectively, to calculate the principal components (PCs) of shape variations. The PC scores were compared between the small and large HVA sides within an individual. RESULTS: The calcaneus in patients with a larger HVA (mean, 43.2 degrees) possessed slender calcaneal tuberosity, more medially oriented posterior articular surface in the coronal plane, and narrower and more concave anterior-middle articular surfaces compared to those with a small HVA (mean, 33.7 degrees). The talus with a larger HVA exhibited more medially oriented talar head in the transverse plane and more anteriorly protruded lateral region of the talar head compared to the small HVA. CONCLUSIONS: The morphological patterns of the calcaneus in patients with a larger HVA allows the hindfoot bones to easily rotate in the everting direction, while those of the talus could induce a larger internal rotation of the first metatarsal. These morphological patterns of the calcaneus and talus could be structural factors affecting the HV.


Assuntos
Calcâneo , Hallux Valgus , Tálus , Humanos , Tálus/anatomia & histologia , Calcâneo/anatomia & histologia , , Tomografia Computadorizada por Raios X/métodos
11.
Sci Rep ; 12(1): 15707, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36127445

RESUMO

This study aimed to identify the stiffness and natural length of the human plantar aponeurosis (PA) during quiet standing using ultrasound shear wave elastography. The shear wave velocity (SWV) of the PA in young healthy males and females (10 participants each) was measured by placing a probe in a hole in the floor plate. The change in the SWV with the passive dorsiflexion of the metatarsophalangeal (MP) joint was measured. The Young's modulus of the PA was estimated to be 64.7 ± 9.4 kPa, which exponentially increased with MP joint dorsiflexion. The PA was estimated to have the natural length when the MP joint was plantarflexed by 13.8°, indicating that the PA is stretched by arch compression during standing. However, the present study demonstrated that the estimated stiffness for the natural length in quiet standing was significantly larger than that in the unloaded condition, revealing that the PA during standing is stiffened by elongation and through the possible activation of intrinsic muscles. Such quantitative information possibly contributes to the detailed biomechanical modeling of the human foot, facilitating an improved understanding of the mechanical functions and pathogenetic mechanisms of the PA during movements.


Assuntos
Aponeurose , Técnicas de Imagem por Elasticidade , Feminino , Pé/diagnóstico por imagem , Pé/fisiologia , Humanos , Masculino , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Posição Ortostática
12.
Sci Rep ; 12(1): 13247, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918451

RESUMO

We developed a method to estimate a biomechanically feasible precision grip posture of the human hand for a given object based on a minimization of the muscle effort. The hand musculoskeletal model was constructed as a chain of 21 rigid links with 37 intrinsic and extrinsic muscles. To grasp an object, the static force and moment equilibrium condition of the object, force balance between the muscle and fingertip forces, and static frictional conditions must be satisfied. We calculated the hand posture, fingertip forces, and muscle activation signals for a given object to minimize the square sum of the muscle activations while satisfying the above kinetic constraints using an evolutionary optimization technique. To evaluate the estimated hand posture and fingertip forces, a wireless fingertip force-sensing device with two six-axis load cells was developed. When grasping the object, the fingertip forces and hand posture were experimentally measured to compare with the corresponding estimated values. The estimated hand postures and fingertip forces were in reasonable agreement to the corresponding measured data, indicating that the proposed hand posture estimation method based on the minimization of muscle effort is effective for the virtual ergonomic assessment of a handheld product.


Assuntos
Força da Mão , Mãos , Dedos/fisiologia , Mãos/fisiologia , Força da Mão/fisiologia , Humanos , Músculos , Postura
13.
Bioinspir Biomim ; 17(6)2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36044880

RESUMO

Indirect actuation of the wings via thoracic deformation is a unique mechanism widely observed in flying insect species. The physical properties of the thorax have been intensively studied in terms of their ability to efficiently generate wingbeats. The basic mechanism of indirect wing actuation is generally explained as a lever model on a cross-sectional plane, where the dorsoventral movement of the mesonotum (dorsal exoskeleton of the mesothorax) generated by contractions of indirect muscles actuates the wing. However, the model considers the mesonotum as an ideal flat plane, whereas the mesonotum is hemispherical and becomes locally deformed during flight. Furthermore, the conventional model is two-dimensional; therefore, three-dimensional wing kinematics by indirect muscles have not been studied to date. In this study, we develop structural models of the mesonotum and mesothorax of the hawkmothAgrius convolvuli, reconstructed from serial cross-sectional images. External forces are applied to the models to mimic muscle contraction, and mesonotum deformation and wing trajectories are analyzed using finite element analysis. We find that applying longitudinal strain to the mesonotum to mimic strain by depressor muscle contraction reproduces local deformation comparable to that of the thorax during flight. Furthermore, the phase difference of the forces applied to the depressor and elevator muscles changes the wing trajectory from a figure eight to a circle, which is qualitatively consistent with the tethered flight experiment. These results indicate that the local deformation of the mesonotum due to its morphology and the thoracic deformation via indirect power muscles can modulate three-dimensional wing trajectories.


Assuntos
Voo Animal , Asas de Animais , Animais , Fenômenos Biomecânicos , Voo Animal/fisiologia , Insetos , Modelos Biológicos , Músculos , Tórax , Asas de Animais/fisiologia
14.
Front Bioeng Biotechnol ; 10: 894731, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814002

RESUMO

Kinetic multi-segment foot models have been proposed to evaluate the forces and moments generated in the foot during walking based on inverse dynamics calculations. However, these models did not consider the plantar aponeurosis (PA) despite its potential importance in generation of the ground reaction forces and storage and release of mechanical energy. This study aimed to develop a novel multi-segment foot model incorporating the PA to better elucidate foot kinetics. The foot model comprised three segments: the phalanx, forefoot, and hindfoot. The PA was modeled using five linear springs connecting the origins and the insertions via intermediate points. To demonstrate the efficacy of the foot model, an inverse dynamic analysis of human gait was performed and how the inclusion of the PA model altered the estimated joint moments was examined. Ten healthy men walked along a walkway with two force plates placed in series close together. The attempts in which the participant placed his fore- and hindfoot on the front and rear force plates, respectively, were selected for inverse dynamic analysis. The stiffness and the natural length of each PA spring remain largely uncertain. Therefore, a sensitivity analysis was conducted to evaluate how the estimated joint moments were altered by the changes in the two parameters within a range reported by previous studies. The present model incorporating the PA predicted that 13%-45% of plantarflexion in the metatarsophalangeal (MTP) joint and 8%-29% of plantarflexion in the midtarsal joints were generated by the PA at the time of push-off during walking. The midtarsal joint generated positive work, whereas the MTP joint generated negative work in the late stance phase. The positive and negative work done by the two joints decreased, indicating that the PA contributed towards transfer of the energy absorbed at the MTP joint to generate positive work at the midtarsal joint during walking. Although validation is limited due to the difficulty associated with direct measurement of the PA force in vivo, the proposed novel foot model may serve as a useful tool to clarify the function and mechanical effects of the PA and the foot during dynamic movements.

15.
J Anat ; 241(3): 776-788, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35608388

RESUMO

Studies have suggested that the brain morphology and flight ability of Aves are interrelated; however, such a relationship has not been thoroughly investigated. This study aimed to examine whether flight ability, volant or flightless, affects brain morphology (size and shape) in the Rallidae, which has independently evolved to adapt secondary flightlessness multiple times within a single taxonomic group. Brain endocasts were extracted from computed tomography images of the crania, measured by 3D geometric morphometrics, and were analyzed using principal component analysis. The results of phylogenetic ANCOVA showed that flightless rails have brain sizes and shapes that are significantly larger than and different from those of volant rails, even after considering the effects of body mass and brain size respectively. Flightless rails tended to have a wider telencephalon and more inferiorly positioned foramen magnum than volant rails. Although the brain is an organ that requires a large amount of metabolic energy, reduced selective pressure for a lower body weight may have allowed flightless rails to have larger brains. The evolution of flightlessness may have changed the position of the foramen magnum downward, which would have allowed the support of the heavier cranium. The larger brain may have facilitated the acquisition of cognitively advanced behavior, such as tool-using behavior, among rails.


Assuntos
Aves , Crânio , Animais , Aves/anatomia & histologia , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Filogenia , Análise de Componente Principal , Crânio/diagnóstico por imagem
16.
Proc Natl Acad Sci U S A ; 119(16): e2114935119, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35412896

RESUMO

In humans, obstetrical difficulties arise from the large head and broad shoulders of the neonate relative to the maternal birth canal. Various characteristics of human cranial development, such as the relatively small head of neonates compared with adults and the delayed fusion of the metopic suture, have been suggested to reflect developmental adaptations to obstetrical constraints. On the other hand, it remains unknown whether the shoulders of humans also exhibit developmental features reflecting obstetrical adaptation. Here we address this question by tracking the development of shoulder width from fetal to adult stages in humans, chimpanzees, and Japanese macaques. Compared with nonhuman primates, shoulder development in humans follows a different trajectory, exhibiting reduced growth relative to trunk length before birth and enhanced growth after birth. This indicates that the perinatal developmental characteristics of the shoulders likely evolved to ease obstetrical difficulties such as shoulder dystocia in humans.


Assuntos
Distocia do Ombro , Ombro , Animais , Feminino , Desenvolvimento Fetal , Humanos , Macaca fuscata , Pan troglodytes , Parto , Gravidez , Risco , Ombro/embriologia , Ombro/crescimento & desenvolvimento , Distocia do Ombro/epidemiologia
17.
Front Bioeng Biotechnol ; 10: 800572, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186902

RESUMO

Improving our understanding on how the foot and ankle joints kinematically adapt to coronally wedged surfaces is important for clarifying the pathogenetic mechanism and possible interventions for the treatment and prevention of foot and lower leg injuries. It is also crucial to interpret the basic biomechanics and functions of the human foot that evolved as an adaptation to obligatory bipedal locomotion. Therefore, we investigated the three-dimensional (3D) bone kinematics of human cadaver feet on level (0°, LS), medially wedged (-10°, MWS), and laterally wedged (+10°, LWS) surfaces under axial loading using a biplanar X-ray fluoroscopy system. Five healthy cadaver feet were axially loaded up to 60 kg (588N) and biplanar fluoroscopic images of the foot and ankle were acquired during axial loading. For the 3D visualization and quantification of detailed foot bony movements, a model-based registration method was employed. The results indicated that the human foot was more largely deformed from the natural posture when the foot was placed on the MWS than on the LWS. During the process of human evolution, the human foot may have retained the ability to more flexibly invert as in African apes to better conform to MWS, possibly because this ability was more adaptive even for terrestrial locomotion on uneven terrains. Moreover, the talus and tibia were externally rotated when the foot was placed on the MWS due to the inversion of the calcaneus, and they were internally rotated when the foot was placed on the LWS due to the eversion of the calcaneus, owing to the structurally embedded mobility of the human talocalcaneal joint. Deformation of the foot during axial loading was relatively smaller on the MWS due to restricted eversion of the calcaneus. The present study provided new insights about kinematic adaptation of the human foot to coronally wedged surfaces that is inherently embedded and prescribed in its anatomical structure. Such detailed descriptions may increase our understanding of the pathogenetic mechanism and possible interventions for the treatment and prevention of foot and lower leg injuries, as well as the evolution of the human foot.

18.
Am J Biol Anthropol ; 177(1): 39-47, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-36787753

RESUMO

OBJECTIVES: Efforts have been made to mathematically reconstruct the brain morphology from human fossil crania to clarify the evolutionary changes in the brain that are associated with the emergence of human cognitive ability. However, because conventional reconstruction methods are based solely on the endocranial shape, deep brain structures cannot be estimated with sufficient accuracy. Our study aims to investigate the possible morphological correspondence between the cranial and deep brain morphologies based on humans and African great apes, with the goal of a more precise reconstruction of fossil brains. MATERIALS AND METHODS: Midsagittal endocranial and deep brain landmarks were obtained from magnetic resonance images of humans and three species of African great apes. The average midsagittal endocranial profile of all four species was calculated after Procrustes registration. The spatial deformation function from each of the endocranial profiles to the average endocranial profile was defined, and the brain landmarks enclosed in the endocranium were transformed using the deformation function to evaluate the interspecific variabilities of the positions of the brain landmarks on the average endocranial profile. RESULTS: The interspecific differences in the shape-normalized positions of the corpus callosum, anterior commissure, thalamus center, and brainstem were approximately within the range of 2% of the human cranial length, indicating that the interspecific variabilities of the positions of these deep brain structures were relatively small among the four species. DISCUSSION: Such an invariant relationship of the deep brain structure and the endocranium that encloses the brain can potentially be utilized to reconstruct the brains of fossil hominins.


Assuntos
Hominidae , Animais , Humanos , Hominidae/anatomia & histologia , Crânio/anatomia & histologia , Encéfalo/diagnóstico por imagem , Tronco Encefálico , Corpo Caloso
19.
Sci Rep ; 11(1): 24063, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911997

RESUMO

To reconstruct locomotor behaviors of fossil hominins and understand the evolution of bipedal locomotion in the human lineage, it is important to clarify the functional morphology of the talar trochlea in humans and extant great apes. Therefore, the present study aimed to investigate the interspecific-differences of the talar trochlear morphology among humans, chimpanzees, gorillas, and orangutans by means of cone frustum approximation to calculate an apical angle and geometric morphometrics for detailed variability in the shape of the talar trochlea. The apical angles in gorillas and orangutans were significantly greater than those in humans and chimpanzees, but no statistical difference was observed between humans and chimpanzees, indicating that the apical angle did not necessarily correspond with the degree of arboreality in hominoids. The geometric morphometrics revealed clear interspecific differences in the trochlear morphology, but no clear association between the morphological characteristics of the trochlea and locomotor behavior was observed. The morphology of the trochlea may not be a distinct skeletal correlate of locomotor behavior, possibly because the morphology is determined not only by locomotor behavior, but also by other factors such as phylogeny and body size.


Assuntos
Osso e Ossos/anatomia & histologia , Hominidae/anatomia & histologia , Hominidae/fisiologia , Locomoção , Fenômenos Fisiológicos Musculoesqueléticos , Animais , Evolução Biológica , Fenômenos Biomecânicos , Osso e Ossos/diagnóstico por imagem , Fósseis , Humanos , Imageamento Tridimensional , Tomografia Computadorizada por Raios X
20.
Front Syst Neurosci ; 15: 774596, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34955770

RESUMO

Toward clarifying the biomechanics and neural mechanisms underlying coordinated control of the complex hand musculoskeletal system, we constructed an anatomically based musculoskeletal model of the Japanese macaque (Macaca fuscata) hand, and then estimated the muscle force of all the hand muscles during a precision grip task using inverse dynamic calculation. The musculoskeletal model was constructed from a computed tomography scan of one adult male macaque cadaver. The hand skeleton was modeled as a chain of rigid links connected by revolute joints. The path of each muscle was defined as a series of points connected by line segments. Using this anatomical model and a model-based matching technique, we constructed 3D hand kinematics during the precision grip task from five simultaneous video recordings. Specifically, we collected electromyographic and kinematic data from one adult male Japanese macaque during the precision grip task and two sequences of the precision grip task were analyzed based on inverse dynamics. Our estimated muscular force patterns were generally in agreement with simultaneously measured electromyographic data. Direct measurement of muscle activations for all the muscles involved in the precision grip task is not feasible, but the present inverse dynamic approach allows estimation for all the hand muscles. Although some methodological limitations certainly exist, the constructed model analysis framework has potential in clarifying the biomechanics and neural control of manual dexterity in macaques and humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...